INSIGHTS SESSION

Flotation
Who We Are

Mineral Engineering Technical Services

- 21 years in Mineral Processing
- Global & Local Experience
- Consulting
- Studies
- Detailed Design
- Due Diligence, Ni, U, Pb-Zn, Au, Cu, Fe, Al
- Laboratory Testwork
Objectives

- Introduction to flotation
- Metallurgical Testwork in Flotation Studies
Flotation Basics

- Flotation uses the manipulation of surface chemistry to preferentially upgrade valuable minerals into a concentrate.

- Flotation can be used to concentrate the values into either the floats (direct flotation) or into the tails (reverse flotation – Phosphates, silica from magnetite, Lithium).

- The type of flotation process will be dependant on the valuable and gangue minerals present.

- Most typically flotation is used to concentrate sulphide based minerals or associated values (e.g. gold, copper, nickel).

- Various reagents are used in order to drive the flotation process through the change of surface chemistry.
Flotation Basics

- Air bubbles are introduced into slurry
- Some minerals attach to the air bubbles
- Minerals carried to surface of slurry due to buoyancy
- Stable froth holds the minerals
- Froth collected at overflow launder
- Surface of mineral must be hydrophobic to attach to air bubbles
History of Flotation Technology

- **Zinc and Lead at Broken Hill, 1901-1915**
 - Several processes and machines were developed
 - Froth flotation (1902-present)
 - A film flotation process (1905-1917)
 - Vacuum flotation (1904-1910)
 - Flotation cells such as Potter-Delprat, Elmore Vacuum, Lyster and Owen cells

Midas

Potter - Delprat Cell (1916)
treated gravity tails to recover zinc sulfides 1902-1923
Minerals Separation Cells - 1916
History of Differential Flotation

- **Harwood** (BHP - 1910) roasted a float concentrate to oxidise galena allowing flotation of sphalerite (*blende*).

- **Lyster** (Zinc Corp – 1912) recognised the different flotation rates of galena and blende – devised a gentle flotation process to recover galena then floated the blende (eucalyptus oil used as frother).

- **Bradford** (BHP – 1913) patented the use of copper sulphate to activate sulfide minerals.

- **Myers** (US – 1913) independently discovered activation by copper sulphate.
History of Flotation Technology

• **Copper in USA, 1911-1920**
 - Froth flotation process was first used in US to produce copper
 - Compressed air flotation cell
 - Flotation reagents were developed from 1916
 - Xanthates were first introduced in 1923
History of Flotation Technology

• **Flotation in Canada, 1917-1922**
 - First flotation plant was used for copper slimes and copper sands

• **Coal in Europe**
 - The first forth flotation plants for coal cleaning in 1920 in Spain and France

• **Years of consolidation, 1925-1960**
 - Efficient sub aeration cells were available
 - Reagents (activator and depressant) were used
 - Technical progress was slow in this period due to economic depression and war
Flotation Principles
3 Phase Contact

- Contact angle: angle between solid surface and the bubble
- Contact angle measures how well the liquid wets the solid surface.
- Small contact angle: surface hydrophilic
- Large contact angle: surface hydrophobic
- Surface properties altered by adsorption of substances
Collectors

- Principal reagent in the flotation process
- Organic heteropolar compounds
- Charged end of the molecule adsorbs onto desired mineral surface
- Non-polar end extends out of mineral surface
- Mineral surface made hydrophobic
• Surfactants, organic heteropolar compounds
• Frother adsorbs at the air/water interface
• Act to lower the waters surface tension
• Frother provides a stable froth above the slurry
• Should not adsorb onto mineral particles

Source: Your Dictionary website (2012)
Effects of Frothers

- Reduced surface tension
 - Stabilises froth
 - Reduces bubble size

- Entrainment
 - Gangue becomes trapped in the interstitial water between bubbles
 - Sufficient space between bubbles for drainage of gangue

- Can hinder adhesion of mineral to bubble

N.W. Johnsen: Entrainment Mechanism
Main Types

1. **Depressants**
 - Chemical which inhibits or prevents the adsorption of a collector
 - Prevents flotation of specific minerals

2. **Activators**
 - Alters surface of mineral to encourage collector adsorption
 - Prepares the mineral surface for adsorption

3. **pH regulators**
 - Adjust pH of slurry
 - Alters performance of reagents/minerals
 - Common pH regulators
 - lime
 - soda ash
 - sulphuric acid
Examples of Flotation Sulphide & Non Sulphides

Sulfide ores

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>Copper-Molybdenum</td>
<td>Lead-Zinc</td>
</tr>
<tr>
<td>Lead-Zinc-Iron</td>
<td>Copper-Lead-Zinc-Iron</td>
<td>Gold-Silver</td>
</tr>
<tr>
<td>Copper and Lead</td>
<td>Nickel</td>
<td>Nickel-Copper</td>
</tr>
</tbody>
</table>

Nonsulfide ores

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorite</td>
<td>Tungsten</td>
<td>Lithium</td>
</tr>
<tr>
<td>Tantalum</td>
<td>Tin</td>
<td>Coal</td>
</tr>
<tr>
<td>Silica from Magnetite</td>
<td></td>
<td>Phosphates</td>
</tr>
</tbody>
</table>
Flotation Equipment
Bougainville Flotation Floor
Flotation Process

- Rotating Shaft
- Air
- Frothing Tank
- Froth Layer
- Froth Effluent
- Hydrophobic Particle
- Hydrophilic Particle
- Air Bubble

Midas METS
Categorised by means of supply of air to cell

Types of flotation devices:
- Mechanical (sub aeration)
- Pneumatic
- Vacuum
- Dissolved air flotation

Mechanical and pneumatic used industrially

Source: Canadian Institute of Mining Metallurgy and Petroleum Website (2012)
Mechanical Flotation Cells

- Agitation produced by impeller
- Air introduced near impeller
- Provides dispersion of the air bubbles and particle-bubble contact
- Self aerating
 - air drawn in by action of impeller
- Supercharged
 - air supplied from blower
Cell Requirements

- Maintain all particles in suspension
- No short circuiting of the cell
- Disperse fine air bubbles through the slurry
- Promote collision between particles and air bubbles
- Provide stable region below the froth
- Provide sufficient depth of froth for drainage
• Finely dispersed bubbles
 — Increases chance of particle contact

• Air flow rate
 — Sufficient bubbles for particle contact
 — Reasonable depth of froth

• Bubbles – Too small
 — Not enough buoyancy to lift particles

• Bubbles – Too large
 — Less bubbles and less particle contact
Agitation

- Maintains particles in suspension
- Prevents settling on the bottom of the tank

- Too little agitation
 - Particles not maintained in suspension

- Too much agitation
 - Can rupture the bond between mineral and bubble
 - Disrupts the froth layer
Mechanical Cell Arrangement

- Froth removal types
 - Unassisted flow over weir
 - Mechanically scrapping froth with paddles

- Cell connection in series
 - Overflow weir between cells
 - Partial baffle
 - No baffle/hog through

Mechanically Scraped Flotation Cell
Outokumpu: TankCell®

- Supercharged mechanical flotation cell
- Controllable air flow
- Tank Cell® -300 largest flotation cell
- Large size range 5-300 m

TankCell - 200

TankCell Impeller

Model of a TankCell
Column Flotation

- Pneumatic flotation type cell
- Uses a column of pulp
- Air is injected at the bottom
- Feed added counter currently near the top
- Residence times are usually short

Source: Metso Website (2012)
Flotation Column

Schematic diagram of flotation column
Flotation Circuits
Flotation Circuits

Feed from grinding → Rougher cells → Scavenger cells

Rougher concentrate → Cleaner tails → Cleaner cells

Cleaner concentrate → Recleaner tails → Recleaner cells

Recleaner tails → Final Concentrate

Scavenger concentrate → Final Tails
Nickel Flotation Circuit
Metallurgical Testwork

Perth
L 6, 524 Hay St
Perth WA 6000
P: (+61 8) 9421 9000
PO Box 5778
St Georges Tce WA 6831

Brisbane
U 4,14 Merivale St
South Brisbane QLD 4101
P: (+61 7) 3029 6220

Melbourne
117 Miller St
Thornbury VIC 3071
P: (+61 3) 9495 2666

Noosa
Se 7&16, L 1 Cooloola Centre
97 Poinciana Av, Tewantin QLD 4565
P: (+61 7) 5449 7137
PO Box 1153
Tewantin QLD 4565

ABN 66 009 357 171
E: info@metsengineering.com
W: www.metsengineering.com
Development of Flowsheets

- Batch testing
- Locked cycle testing
- Impact of site water
- Pilot Plant Work
- Mini Plant
- Simulation
Samples & Sample Selection

METALLURGY SAMPLES
DDH CROSS SECTION

Variability Samples
1 metre sections
v1, v2, v3

Oxide Ore Zone
Transition Ore Zone
Primary Ore Zone
Testwork plans and studies

- Why do test plans and carry out testwork?
 - Unique properties and mineral contents for each ore deposit
 - To characterise the ore
 - Basis of studies
 - To develop process flow sheet
 - To develop process design criteria
 - To estimate capital and operating cost
 - To minimise process risk
 > Care of sample
• Geometallurgy
• Drill core not RC chips
• Sample all ore >10%
• Include mine waste 10%?

• Geology - recognise ore domains
• Mineralogy
• Processing
• Economics
• Risk management
• Metallurgical mapping
Testwork Required For Studies

<table>
<thead>
<tr>
<th>Type of Test</th>
<th>Scoping</th>
<th>Pre-feasibility</th>
<th>Feasibility</th>
<th>Basic Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comminution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bond work indices (rod and ball)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bond abrasion indices</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SAG power index (SPI variability)</td>
<td>(X)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bond work indices (crushing)</td>
<td>—</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MacPherson autogenous index</td>
<td>—</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Autogenous media competency (advanced)*</td>
<td>—</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>UCS/PLI</td>
<td>(X)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Fracture frequency</td>
<td>(X)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bond work indices (rod and ball) 2nd facility</td>
<td>—</td>
<td>(X)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>JK Tech drop weight tests</td>
<td>—</td>
<td>(X)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AG/SAG pilot plant</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Final process design criteria</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Flotation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preliminary reagents/pH</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Rougher Grind-grade-recovery</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Regrind and cleaner flotation</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Clocked-cycle</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ultra fine grinding</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Optimization of major ore type (variability)</td>
<td>—</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pilot plant (complex/difficult ores)</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Final process design criteria</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Dewatering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentrate thickening</td>
<td>—</td>
<td>(X)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Concentrate filtration</td>
<td>—</td>
<td>(X)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Tailing thickening</td>
<td>—</td>
<td>(X)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Tailing filtration</td>
<td>—</td>
<td>(X)</td>
<td>(X)</td>
<td>(X)</td>
</tr>
<tr>
<td>Final process design criteria</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Heavy Minerals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravity gold recovery (GRG)</td>
<td>—</td>
<td>(X)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Heavy Liquid Separation</td>
<td>X</td>
<td>X</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Gravity/magnetic/electrostatic</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pilot Plant</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Final process design criteria</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Leaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small diameter columns (variability)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Intermediate diameter columns</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Large diameter columns</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bottle roll (variability)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Batch agitation leaching (CIL/CIP)**</td>
<td>—</td>
<td>(X)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Semi-continuous (CIL/CIP)**</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Agitation design tests (rheology, suspension)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>Final process design criteria</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Overall Copper Testplan

Example of Copper ore testwork program

- Comminution Testwork
 - Head Assay: Cu, Pb, Zn, Ag, Au, As, Fe, S + ICP Scan
 - Mineralogy
 - True SG
 - Grind Establishment: P80 - 75μm, P80 - 250μm

- Extraction Testwork
 - Flotation Test: P80 = 75μm
 - Collector Dosage test
 - Flotation test: Rergrid concentrate
 - Collector Test: Collector for Cu, not FeS2 (depress FeS2)

- Reserve
- Crush < 19mm
- Crush < 2mm
- Apparent Relative Density
- Comminution tests
- Bond Work index determination
- Rougher/cleaner Flotation
- Coarser Flotation
Metallurgical Summary Testwork Report

- Introduction
- Interpretation of test work results
 - Development of flowsheets and design criteria
- Recommendations
- Scope of Work
- Samples- domains
- Head assays
- Mineralogy
- Comminution
- Flotation
- Process Design Criteria
- Flowsheet Development
- Etc. etc.
THANK YOU

www.metsengineering.com